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Buckling in Fast Reactors. I.
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ABSTRACT

The energy-dependent reactor diffusion equation can be
expanded in a series of products of purely spectral and purely
spatial components. A convenient set of base spectra are the
coefficients when the fundamental mode spectrum is expressed
as a power series in B2. The algorithm for forming these
spectra is relatively simple. Some of the properties of these
spectra are exhibited, and the reduction of the reactor prob-
lem to one of definable overlapping diffusion groups is

explored.
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INTRODUCTION

The concept of buckling was introduced in the first explorations of
reactors for several reasons:

(1) The reactors were large and almost all of their volume was des-
cribable by the fundamental spatial and spectral mode.

(2) Reflector savings were relatively small, and the buckling pro-
vided an accurate estimate of critical dimensions.

(3) With infinite multiplication only slightly greater than unity,
measurement of buckling, combined with estimation of the form of P(B) —
from experiment or theory — permitted more accurate determination of k_
than any other technique.

The first reactors were large, natural-uranium-fueled ones, to which
these comments are very pertinent. However, the early fast reactors were
small, highly reflected, and with k_ in the core around 2. To such reac-
tors, the concept of buckling was not useful, and the main theoretical
approaches emphasize transport and multigroup calculations, with the
fundamental mode only one of many important spatial modes in the reactor.

However, the relative simplicity of buckling measurements prompted
experimental groups, first at Los Alamos and then at Argormel to attempt
to determine buckling and bring its measurements into consonance with the
theoretical models available. A particularly large effort was expended
in determining the (negative) buckling of an assembly of natural uranium.2

As the design of fast reactors for central-station power generation
evolved, it became apparent that these reactors were reverting toward

systems for which the buckling could again be a useful parameter. The
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incorporation of large amounts of 238U into the core to facilitate in-
ternal breeding brought values of k_ into the range 1.0-1.5. Even at
the high power densities of breeders, the size of reactor cores to supply
heat for 1000 MW of electrical generation becomes large enough so that we
expect major portions of the core to be only mildly influenced by reflec-
tor transients. With understanding of the behavior of reflector savings,
the estimation or measurement of buckling then becomes a useful predictor
of criticality in fast reactors. Thus, Hummel was able, through the
ELMOE code,3 to use changes in buckling of reactors to separate reactivity
effects which are intrinsic in the core from those which are reflector-
induced. In France, there have been a number of experiments on buckling,
both to determine core critical properties and to use buckling as a
measure of reactivity difference in substitution expem'ments.u

Up to now, the interpretation of buckling experiments has been pri-
marily a matter of camparing measured values with those deduced from such
basic calculations as ELMOE. Where discrepancies appear, the cross-section
set itself must bear the burden. This is entirely proper in the ultimate;
however, the discovery of adjustments to nuclear data is much eased if a
simpler interpretation of buckling can lead to another, easily charac-
terized integral parameter. In thermal reactors, as had been mentioned,

this interpretation is provided by the relation
k P(B) = 1, (1)

where P(B) is the nonleakage probability associated with buckling B?.
Equation (1) holds for critical systems, which is a strong experimental
condition. In thermal reactors, P(B) is at least partly measurable,

since it is related to migration during slowing down, which is measurable
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and only slightly perturbed by absorption, and to thermal neutron migra-
tion which is either accurately described by diffusion theory in the
global sense, or is small. The standard interpretation of P(B) is as the
Fourier transform of the spatial distribution of flux leading to absorp-
tion, from a point source of fission neutrons in an infinite medium
whose slowing-down and absorption characteristics are identical with
those of the reactor, but in which fission does not occur (Weinbergs).

This (correct) interpretation has discouraged attempts to estimate
P(B) for fast reactors. It is well-nigh impossible to mock up a fast
reactor core for migration measurements, and simultaneously to suppress
fission. Thus, estimation of P(B) is limited to the examination of the
variation of B2 with, for example, v, in ELMOE-type codes. This proce-
dure is again correct; however, it suffers from the fact that inference
of P(B) for negative or camplex B2, which is often desirable to estimate
reflector-induced transients, is a very imprecise extrapolation.

The first portion of this paper is the presentation of a method for
deriving P(B) as a power series in B2, using purely spectral calculations.
The significance of this technique lies not only in its ability to explore
P(B) for negative or camplex BZ, but also in the fact that the spectra
associated with powers of B2 have in themselves interesting properties
which suggest the utility of overlapping multigroup formalisms and Lie

series for calculating global properties of fast reactors.

A POWER SERIES FOR P(B)

Assuming diffusion theory, the space-energy equations for any reac-

tor may be written as:
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-D(E)V2$(T,E) + I:Za(E) + zs(}:):lqs(?,E) 2 r 1, (E)6(@,E)P_(E* » E) dE”
E

= x(E) rvzfmw(z,z‘) aE” . (2)
0

The symbols in Eq. (2) have their canonical meanings. The only
unusual cones are PS(E‘ + E), the probability that a scattering event for
a neutron of energy E” will lead to its emergence at energy E, and x(E),
the fission spectrum. If there are several fissionable isotopes, vI £ is
interpreted as Stijm viles for the "i" isotopes. In addition to the assump-
tions of diffusion theory, Eq. (2) assumes that scattering is isotropic,
which is virtually within diffusion theory, and that the fission spectrum
is invariant to fissioning species. This latter assumption is almost
correct if there is a dominant fissionable material, and is easily set
right by defining a x; it is made only to simplify notation.

Suppose there exists a fundamental mode and a critical reactor.

Then the fundamental mode may be written

#(TE) = £,(T,B;)S,(E) , (3
where

V2£, ($,By) = -B2f,(r,B) . )

Substitution of Eqs. (3) and (4) into Eq. (2) permits factorization

and division of f;, and leads to

Eagn(ﬁ) + 1 (E) + zS(E)]SO(E) = L £ (E1)S (E")P_(E” » E) dE’

= x(®) J vZf(E‘)So(E‘) dE” . (5)
0
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If we integrate Eq. (5) over all E, remembering that x(E) is norma-
lized to unity and that the integral of P_ over emergent energies is also
unity, we get:

2 - - , >

IO |EBOD(E) * za(}:)]so(E) dE = JO VEL(ET)S (E7) dE” . (6)

Useful relations may also be derived for an idealized infinite-
medium experiment. If an infinite medium has a unit fission-spectrum

source per unit volume, then the spectrum of neutrons would be given by

S_» where S_ is the spectrum which solves:

Ea(E) iz ES(EZ|S°°(E) - -L: L (ENDNS (ETDP(E” » E) E” = x(E) . 7

Integration over all energies reveals that since the neutron produc-
tion rate, / x dE, is unity, so is the absorption rate, [ ZaSw de. If
we now ask what the production rate would be if the spectrum were per-

mitted to cause fission, it would be S vI me dE. Thus,
e E fw\)EfSo° dEN. (8)
0

The fact that systems with small bucklings have spectra approaching
those of infinite media is well known. It suggests that we look for

solutions of S, in the form of
- 2\n
5 L CBYe (9)
n=0

(7]
n

with

Gl =0 1S ts (10)
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Substitution of Eq. (9) into Eq. (5) yields:
© s " _ : y i
] (-B®) Ea(E) + zs(EﬂGH(E) f; £ (E)G (E*)P (E” » E) dE

n=0

00 ©

(11)

5 . _ 2
- x(E) j VI(EIG (B &Y = | (-BD) DEYG,_ (E) .
0 n=1
We now define Gn by the relation
’;a(E) + ):a(E):IGn+l(E) - E ES(E‘)Gml(E‘)PS(E‘ HENAESS = D(E)Gn(E) =

Substituting Eq. (12) into Eq. (11) gives:
l}a(E) + ES(EEJGO(E) - fg ES(E’)GO(E‘)PS(E’ > E) dB®

: x(s)f VIL(E) | (-B))G (E)) GE” .
0 n=0

Since G, = S_, we may substitute Eq. (7) to get

E 2 = . . .
1l = -B7) L AES)GL(E) dE" .
nzo (-By J(o R n

Fraom Eq. (8), we next get

n= 0

L 2 C ’ ) b 00 A d | _
k,, Eo (-130)nU0 v (E")G (E”) dB] f VI (E*)G (E") dE} =3

All that remains is to define

(12)

(13)

(1)

(15)
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g = J vI (E*)G (E7) dE;///J vI(E)G,(E") &E” , (16)
0 0

and to identify Eq. (15) with Eq. (1). This yields
P(B) = ] g (-BO)" . Qan
n=0

(See footnote a.)

The above proof suggests an algorithm for camputing Gn and g, We
take as given a program which will solve for the infinite medium spectrum
with a fission spectrun source. That is, we assume that we have means of
solving Eq. (7); a subroutine of ELMOE will do as an example. Then, the
Gn may be computed by successive substitution of D Gn—l for x, and the g

by direct quadrature. The result is a purely spectral calculation of P(B).

EXAMPLE: AN AGING SYSTEM

We may illustrate the process analytically by taking as an illustra-
tion a system with the following properties:
(a) monoenergetic fission source at energy Ej, lethargy 0;
(b) slowing-down in a continuous mode without absorption to
lethargy U; and
(c) absorption and fission without further migration on reaching
lethargy U.

These assumptions mean that Eq. (5) may be written as

3 -
B3D S, + - [gzssﬂ = ks EZSSEI - (18)
U
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where we have converted to lethargy space, and need only consider u in

(0,U). Equation (7) becomes

Ser s | = s . 19
au

Then,
3
GO = -l_,
EL_
u -
gl _1_.f Ddu” (20)
er Jp g2 (u)
- 2
g = —1—J L )y arr J L ar,
€20 20 ER 0 EZ
S
Ete.
Neutron age is given by
f wen R A degyE D, (21)
EZS
so that Egs. (20) become:
g e 12
GO = 1 ’ Gl = ——lT . G2 = zz— 2— (22)
EL |, €L ol
In general,
L) EX |t n!

Further,
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J VIG du = k_[eIG A (24)
0 £ [ 2 n]'r(U)
Therefore,
()"
g, Ty (25)
and
& n
P = § 8O X o op (B2} . (26)
0 n!

This is, of course, the classical value.

A COMMENT ON THE G-SPECTRA OF FAST REACTORS

Typical fast reactors have essentially three spectral regions:

(1) At high energies, the spectrum is dominated by the interplay be-
tween the fission-spectrum source and inelastic scattering events involving
large energy losses. Absorption is adequately represented by a smooth
curve, both because of the extreme validity of the narrow resonance
approximation and the smearing action of Doppler broadening on resonances.

(2) At intermediate energies, roughly 5-100 keV, the spectrum can
be calculated quite well as a superposition of a gross spectrum, generated
fram continuous slowing-down theory with effective smeared absorption,
and detailed resonance calculation.

(3) At lower energies, the continuous slowing-down model remains
useful, but one must treat some resonances (such as those in sodium) in
detail.

Most of the need for representation of the spectrum in many groups
arises fram the high-energy groups. In principle, continuous slowing-

down should be adequate to describe energy transfer at the lower energies.
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Now, if we note the trend of the G-spectra for the aging system, we
observe that each G_ | is softer than the previous G - We expect this
to hold true for fast reactors as well. In essence, then, we may expect
that, after the first few G, > we can switch to a much simpler mathematical
format to derive ligher Gj; solution of the continuous slowing-down equa-
tions involves simple quadrature in u. Ultimately, the G, should approach

highly peaked functions which may be well approximated analytically.

THE ADJOINT FUNCTION

The same procedure as recommended for the flux may be used to deter-
mine an adjoint expansion.

The adjoint equation analogous to Eq. (5) is

E
Esglx}:) +TEYS B (E):|S+(E) - 5_(B) J S5(E”)P (E +E*) dE°
a s 0 S 0

= VI (E) J x(E‘)S;(E’) de’ . @7
0

For the infinite system, the adjoint spectrum is the solution of

E
[z (E) +: (E{|ST(E) - £_(B) f STEP_(E» E)) " = vIL(E) . (28)
a S o= S 0 0 S

We may write a system of equations such that:

E (29)

n ; ; 2
[Ea + Zs]Gn+l -z fo Gn+1(E P (E~+E ) dE

DG
n

Then we may write
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gh =

. -B)"S! (30)

or~ 8

provided that

1
=

JQ X(E) [ (-B)"GHE" -
0 & .

(31)

is satisfied.

Let us multiply Eq. (28) by GO(E) —or S_(E) — and integrate over
energy. This leads to the following equation after reversal of integra-

tion order and replacement of S: by G;:

+ & 1 . . it
Jm G, (E) dE ’za + xs‘so = f EGy(E))P_(E” » E) dE* = f vE (E)G(E) &E .
0 \ J ‘E Jo
(32)

Substituting Eq. (7) for the term in braces in Eq. (32),

0 + . _
J Gyx dE = J VEG) & = Kk, - (33)
0

We may thus define a critical condition
*t(R2) =
KIEEsY &1, (3w)

where

P'(By) I -B)g
0

(35)

. iy - i
g J: X(E)G! dE Jo x(E)G, dE

It is well known that the buckling spectrum of flux and adjoint are

identical. From this, it follows that
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P'(B) = P(B)
(36)
-
g = g -

The adjoint function has the property of orthogonality to the real
flux spectrum in the sense that:

L Brzl are the several values of B2 which satisfy the critical equa-
tion [(17) or (34)]; and if

Br21 are all different.

Then

J S (E)ST(E)D(E) dE = 0, form # n, (37)
0 m

APPLICATION OF THE G-SPECTRA

The properties of the G spectra which can be applied stem fram their
(assumed) completeness and from the form of expansion of the fundamental
mode. If the Gn are a complete set (which, except for pathological cases,
they are), then they may perhaps be of use in defining alternate multigroup
systems to the usual step-function-in-energy system. In particular, such
a system might have the first group as fundamental mode, with other group
spectra orthogonal to it. Then it would be possible to deal with transients,

as introduced by reflectors and boundaries, more directly.

MULTIGROUP RORMULATIONS

In a multigroup model of standard type, ¢(;,E) is replaced by an

n-vector, 3(;), where the "n" camponents of ¢ represent the flux in
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specified E-regions, D and L, are diagonal matrices, integration over vE £
is replaced by premultiplication by an n-adjoint-vector, x(E) becomes a
vector ;(, and the scattering law is replaced by a transfer matrix.

The fundamental mode has a spectrum described by an eigenvector, and
these are n-1 other eigenvectors which represent the higher-mode spectra.
sz1 is often complex for n > 0, and the higher modes have complex spectra;
however, n-1 linearly independent real spectra, all of which are ortho-
gonal to the fundamental mode, can be synthesized fram them.

The critical equation in an n-group system is always expressible in

the form
] s
Lo ds Bty (38)
k=0 ak

This means that the criterion for good representation of any system by a
multigroup scheme might by that 1/P(B) should be a series which terminates
after a certain number of powers of BZ2.

The most direct method of determining this is by formal inversion of

P(B). We may write
ve® = ] ap?, (39)

and derive the a iteratively from

(40)
(oytl

1]
[N e ol

“x 28y

=1

Because a and g, are dimensional, and because of cumulation of
errors, it is recammended that convergence be examined by inspecting

an+lan_l/a§; if this number suddenly becames small, an n-group approxi-
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mation is justified. If, after many terms have been examined, there
seems to be an approach to a constant ratio, an age-like solution can be
suspected, and examination of the canvergence of ak’to aTk/k! , where a
and T are constants, is recommended.

If we have an N group system, (;N and higher will be linear cambina-
tions of Gps> = - ’GN—l' Thus, all necessary relations can be obtained by
computing 2N functions — N fluxes and adjoints, or 2N fluxes, which is
algorithmically simpler.

Note that for a true N-group system, all a for n > N must vanish.
Thus, one should examine an+2an_2/ax2_‘etc. , for a few terms before con-
cluding that an N-group approximation is valid.

A mathematically more satisfactory way of determining the validity
of an N-group approach is to determine the degree to which x/D may be
represented by a linear combination of G, . . 'GN-l' If this is the case,
GN—l is a linear canbination of x/D and g's of lower order, whence GN et
seq. also are (fram the recursion relations for G).

The equivalent statement is that Gy would likewise be a linear combi-
nation of G, . . . GN—l' A necessary condition for this to be the case

is the vanishing of the determinant of g's to order 2N:

8081 -+ - - By

. ' = 0.

B v vt By

This effectively states that there is a linear combination, P, of

Gy - - - Gy_p Such that

0

15
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n
o
=)

"
o
v
| =]

J: G;D(GN = P] dE
and (42)

J: vzf(GN—P] dE = 0.

It also means that a., <A all vanish. In other words, if

g
the critical equation of form (39) has any terms of order greater than
B2N, they start at BuN+2. While not mathematically impossible, such

cases must be classified as pathological.

For comparison, the N-th order determinant for an age theory system
would be of the order of:

[gl)Nz’“N[ﬁ' n!] [ﬁ' n!] ; (43)

0 N
The determinant in Eq. (41) would have to be small compared to expression
(43) in order to justify an N-group theory.

Once an N group theory has been established, we have some liberty in
defining the groups which we shall use. All of them are, of course,
linear combinations of the Gn.

The obvious choice is to define our groups orthogonal to each other,
and to take as our first group the fundamental mode. To express it in
terms of Gy . . . Gy ; (remembering that Gy et seq. are themselves

linear combinations of them), we start with the relation

N

1 |2
ENek 121 ) Bypee?y K

16
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which follows fram (40) and the vanishing of a, for £ > N. It may now

be shown that this corresponds to a similar expression for the G's:

N

nZO (B ... = 0, k> 0) . (45)

We now take Eq. (9), multiplying Sy by k_ on the left-hand side and
the infinite sum in Eq. (9) by the series expression for k_ in terms of

2
B, [Eq. (38) with n = N). The use of Eq. (45) then leads to:

1 Nil o Nel 7,
SRl = (-6 y a, B
0 L
k,_ n=0 o A
N-1 L
& 2% n
=RELEY SRS W M)A G, (46)
k 220 ° n=0 e

Other groups may be defined to illustrate the transient spatial be-
havior of specific reactions. We may choose a group for one reaction which
is orthogonal to the fundamental; a group for another which is orthogonal
to the first two; and so on until we have N-2 reactions illustrated. Then
the first reaction has a spatial dependence derived from the fundamental
mode and the first of these synthetic groups; the spatial dependence of
the second reaction depends on these two, plus the next synthetic group;
and so on. (With the fundamental mode and N-2 such transients, we have a
"ghost" group left over; at least one such '"ghost" is needed in order to

preserve group orthogonality.)

THE FISSION TRANSIENT

We illustrate the formation of groups by looking at a particularly

straightforward one to synthesize. This is that transient which

17
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incorporates all the fission rate which is not part of the fundamental mode.
We look for a spectrum of the form aS; - Bx/D = S¢ which is orthogonal to
Sp- Then, all other spectra which are linearly independent of S, and S:
will be orthogonal to them [in the f A+(E)D(E)B(E) dE sense]. It follows
that only S, and S; will have nonvanishing integrals over vI £
If we now adopt the notation:

(aB) - J A*(E)D(E)B(E) ¢E , 47)
0

the desired function is

sl>s -<ss>i=s : (48)
<0D 0 OOD f

The representation of x/D as a function of the Gn is now necessary.

Formally, we may write

! X6, (49)

0

vI
Y E<——fx> Y (50)
D D

and obtain the X, by solution of:

o =

= 2 -
g0:81-82> + -+ - Xp Y
213825835 + + - X g0
X] g1

3 (51)
Em | -

Equation (51) is operationally difficult to solve, but conceptually

M+~ +hat the determinant of the matrix in Eq. (51) is, for a finite
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approximation, the same one as is usedto test the validity of a multigroup

approximation of finite order.

THE MULTIGROUP EQUATIONS

We finish this first part of the specification of the method by seeing
how we construct multigroup equations. Let us assume that we have completed
the construction of SO, Sf . . ., etc., in such a fashion that each one is
orthogonal to the others. Let us further assume that we have, by hook or
crook, arranged for the multigroup representation to be finite (this is a
convenience rather than a necessity). Finally, let us label Sp = Qp,
Sf=Q2 & i uptoQN. Thus, I have a set of

N
Q. = Z C;465-1 > (52)

D) jl

where all the Cij have been defined. Similarly,

N
g% = ] B.E (53)
and
Qo) =0, i#3 (54)

We now write

N -+
o(FE) = ] QB , (55)
k=1
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and substitute into Eq. (2),

N N
5 2 = o
kgl Q (E)D(EIV2E, (7) + kzl fk(r)l[ia(E) + zs(é?]ok(z)
E

= Jw I (E)P_(E” > E)Q(E") dE‘}

N
= x(B) ] £® [“ VE(E)Q, (E) GE” . (56)
k=1 0
Multiplying by Q: and integrating (remember, Q; = Sp) gives

N L N vi
-@&bﬂﬁ k%fﬁﬂE@be-D%@&E% £l§<:f%>, (s7)

which reduces to

+

(v2 + B%)f]

"
o
-

as it should.

e . ¥
Multiplication by Q, and integrating gives:

-<QzQz>~sz2+ ! frog = - 22_?221% £ -<<Z—j2j>zf2 . (58)

The A, are obtained by substituting the expansians for Q [into
Eq. (52)] into Eq. (57), using the recursion relations for G , and sub-
stituting back the resulting expressions from G into Q.

Similar expressions are found by integrating over Q:l for n > 2. The

~~enlt+ is A set of N equations, of which the first, as fundamental mode,
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is independent of the rest. The other N-1 equations represent a full
matrix of equations with sources to the set coming from the fundamental
mode. The Laplacian term is purely diagonal. The set is therefore
determinate.

Each spectrum defines a Dk — an effective diffusion coefficient —
such that D, vf, is continuous across normal boundaries. Also, each fk
is continuous (these properties derive from the detailed spectral con-
tinuities of the original equation). In general, it will prove impossible

to satisfy all boundary conditions unless the reactor is critical.

REFLECTORS

Reflectors are, in general, nonmultiplying; therefore the x terms
will be small or vanish. Reflectors also have a different scattering
maxtrix from cores, and different absorption.

The equations for the reflector must be obtained as in the core.

It is assumed that the same set of orthogonal spectra describe the entire

problem. Then the reflector equations become:

j »Zl P D_(E)Q, @
=FCQNQRNVEE i —+ dE |Z_ +I -J):QP(E‘*E)CIE‘
<k k> - P rk . DP(E) a, Sh g S%&s
DC(E) (E) g f ) Q,(E”) dE” (59)
= e Q + (E f vI i .
o DB X =1 Tk, R

The appropriate integrals must be evaluated to find a set of group

equations for the f o
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FOOTNOTE

2 mathematically rigorous proof would require the demonstration that
the G defined by Egs. (10) and (12) form a complete set of functions in
the space defined by solutions of Eq. (5). Our proof is equivalent to
replacing the coefficient of x in Eq. (5) by an arbitrary multiplier,
assuming convergence of g, and identifying the multiplier as unity for a
critical system. We think that it illustrates the physics better. Note
also that we could have gotten to Eq. (4) directly by substituting
Egs. (9), (10), and (12) into Eq. (6).

22
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